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The observation that nanomolar concentrations of K252a (1)
and staurosporine (2) inhibit a variety of protein kinases
continues to spawn intense efforts in the isolation and synthesis
of novel indolocarbazoles.1 Our interest in these natural
products has evolved over the past 10 months from the first
total synthesis of (+)-K252a2,3 to a general synthetic approach
to staurosporine4,5 and its congeners [e.g., RK-286c (3)6 and
MLR-52 (4)7].8 These latest developments were inspired after
considering the structural similarities of1-4 and recognizing
that a logical common intermediate (5) might be accessible via
ring expansion of6, a derivative of the penultimate intermediate
in our synthesis of (+)-1 (i.e., (+)-7, Scheme 1). Herein we
report the successful application of this ring expansion strategy
to the preparation of (+)-5 and its use in the total synthesis of
(+)-1-4.
The initial challenge of preparing the quantities of (+)-7

needed to initiate the synthesis was met by advancing glycine
methyl ester through the 11-step sequence developed in our
K252a synthesis.2 With multigram quantities of material
available, we set the stage for ring expansion by converting
(+)-7 to (+)-69 via a two-step sequence that involves LiBH4

reduction and Moffatt oxidation10 (63% yield overall, Scheme
2). Given that the proposed ring expansion of6 to 5 could
proceed to a mixture of regio- and stereoisomeric products, we
were delighted to discover that treatment of (+)-6 with BF3‚
OEt2 in Et2O (2.2 equiv, 25-30 °C, 24 h) producesa single
product, (+)-59, in 85% yield! The regio- and stereochemical
outcomes of this reaction, which were confirmed by spectral
comparison to a closely related model and the conversion of
(+)-5 to (+)-1-4 (Vide infra),8a are consistent with migration
of the C-C bond engaged in the quaternary aminal linkage to

thesi-face of the aldehyde; thus suggesting the syn-periplanar
alignment of the carbonyl and hydroxyl moieties illustrated in
structure8 (Scheme 2).
In an effort to generate a more versatile intermediate, we

initiated what proved to be a futile but interesting effort to
convert (+)-5 into the corresponding methyl ether9. Although
unproductive in terms of preparing9, these methylation attempts
led to the unexpected observation that exposure of (+)-5 to CuCl
in MeOH results ina highly stereoselectiVe oxidation/ring
contraction sequence that produces (+)-7 in 95% yield!11,12

Turning from our inadvertent discovery of a potentially
biomimetic synthesis of (+)-K252a, to alternatives for the
troublesome methylation, we recognized that reduction of5
would likely proceed with a high degree of stereoselectivity to
produce a diol (i.e.,10) wherein the differing steric environments
of the equatorial (C3′) and axial (C4′) hydroxyl groups might
allow selective methylation. In practice, ketone (+)-5 was
indeed found to undergo selective conversion to (+)-119 upon
sequential treatment with NaBH4 and NaH/MeI.13

Having installed all of the functional groups common to (+)-
2-4, our approach diverged into the synthesis of (+)-RK286c
and (+)-MLR-52. The former was completed via deprotection
of (+)-11 (TFA/anisole) while the latter required a three-step
sequence that was initiated by exposing (+)-11 to the Martin
Sulfurane.14 Oxidation of the derived olefin with OsO4 followed
by deprotection of the resultant diol [(+)-129] produced (+)-4.
The elusive nature ofR-methoxy ketone9 guided our

approach to staurosporine along a route wherein the 4′ nitrogen
is introduced via conversion of (+)-5 to the corresponding oxime
(-)-139,15 (H2NOH‚HCl, NaOAc, Scheme 3). Crucial for the
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success of this approach is the fact that (-)-13, unlike ketone
(+)-5, readily undergoes alkylation to the C3′ methyl ether (MeI,
KOH, n-Bu4NBr). Stereoselective reduction of the derived
methoxy oxime (-)-149,16 (H2, PtO2) to the corresponding
primary amine ((+)-15)9 followed by monomethylation (HCO2-
COCH3, BH3‚DMS)17 and deprotection (TFA) produced (+)-
staurosporine.18

In summary, our efforts to devise an efficient synthesis of
the pyranosylated indolocarbazoles via a common intermediate

[i.e., (+)-5] have been successful in delivering (+)-2 (19 steps),
(+)-3 (17 steps), and (+)-4 (19 steps).19 In addition, these
investigations have revealed both ring expansion and contraction
reactivity that may play a central role in the biogenesis of both
the furanosylated and pyranosylated members of this important
class of natural products.20 Studies directed toward elucidating
the relevance of these biosynthetic implications are underway
and will be reported in due course.
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